ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Анджанс А.

F(x) – возрастающая функция, определённая на отрезке  [0, 1].  Известно, что область её значений принадлежит отрезку  [0, 1].  Доказать, что, каково бы ни было натуральное n, график функции можно покрыть N прямоугольниками, стороны которых параллельны осям координат так, что площадь каждого равна 1/n². (В прямоугольник мы включаем его внутренние точки и точки его границы.)

   Решение

Задачи

Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 590]      



Задача 78582

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Неравенство Коши ]
[ Построения в пространстве (прочее) ]
Сложность: 4+
Классы: 10,11

Дана плоскость P и две точки A и B по разные стороны от неё. Построить сферу, проходящую через эти точки, высекающую из P наименьший круг.

Прислать комментарий     Решение

Задача 97832

Темы:   [ Непрерывные функции (общие свойства) ]
[ Монотонность, ограниченность ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 10,11

Автор: Анджанс А.

F(x) – возрастающая функция, определённая на отрезке  [0, 1].  Известно, что область её значений принадлежит отрезку  [0, 1].  Доказать, что, каково бы ни было натуральное n, график функции можно покрыть N прямоугольниками, стороны которых параллельны осям координат так, что площадь каждого равна 1/n². (В прямоугольник мы включаем его внутренние точки и точки его границы.)

Прислать комментарий     Решение

Задача 109735

Темы:   [ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4+
Классы: 9,10,11

a и b – такие различные натуральные числа, что  ab(a + b)  делится на  a² + ab + b².  Докажите, что  |a – b| > .

Прислать комментарий     Решение

Задача 115356

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 9,10,11

В клетки квадрата 100×100 расставили числа 1, 2, ..., 10000, каждое – по одному разу; при этом числа, различающиеся на 1, записаны в соседних по стороне клетках. После этого посчитали расстояния между центрами каждых двух клеток, числа в которых различаются ровно на 5000. Пусть S – минимальное из этих расстояний. Какое наибольшее значение может принимать S?

Прислать комментарий     Решение

Задача 116700

Темы:   [ Геометрическая прогрессия ]
[ Индукция (прочее) ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 4+
Классы: 11

Для  n = 1, 2, 3  будем называть числом n-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию
1,  (n + 2),  (n + 2)²,  ..., либо является суммой нескольких различных её членов. Докажите, что любое натуральное число можно представить в виде суммы числа первого типа, числа второго типа и числа третьего типа.

Прислать комментарий     Решение

Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .