Версия для печати
Убрать все задачи
Середины противоположных рёбер тетраэдра соединены. Доказать, что
сумма трёх полученных отрезков меньше полусуммы рёбер тетраэдра.

Решение
Окружность с центром
I , вписанная в грань
ABC треугольной пирамиды
SABC ,
касается отрезков
AB ,
BC ,
CA в точках
D ,
E ,
F
соответственно. На отрезках
SA ,
SB ,
SC отмечены соответственно точки
A' ,
B' ,
C' так, что
AA'=AD ,
BB'=BE ,
CC'=CF ;
S' –
точка на описанной сфере пирамиды, диаметрально противоположная точке
S . Известно, что
SI является высотой пирамиды. Докажите, что
точка
S' равноудалена от точек
A' ,
B' ,
C' .


Решение
Из вершин основания тетраэдра в боковых гранях провели высоты, а затем в каждой из боковых граней основания двух лежащих в ней высот соединили прямой. Докажите, что эти три прямые параллельны одной плоскости.

Решение