ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Докажите, что все окружности и прямые задаются уравнениями вида
Az
где A и D — вещественные числа, а c — комплексное число. Наоборот,
докажите, что любое уравнение такого вида задает либо окружность, либо прямую,
либо точку, либо пустое множество.
б) Докажите, что при инверсии окружности и прямые переходят в окружности и прямые. ![]() ![]() Верно ли, что к любому числу, равному произведению двух последовательных натуральных чисел, можно приписать в конце какие-то две цифры так, что получится квадрат натурального числа? ![]() ![]() ![]() Доказать, что выражение равно 2, если 1<= a <= 2 , и равно 2 ![]() ![]() ![]() Положительные числа a, b, c, d таковы, что a ≤ b ≤ c ≤ d и a + b + c + d ≥ 1. Докажите, что a² + 3b² + 5c² + 7d² ≥ 1. ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]
Докажите равенство (a2 + b2)(u2 + v2) = (au + bv)2 + (av – bu)2.
Является ли число 49 + 610 + 320 простым?
Докажите, что при любом натуральном n число n² + 8n + 15 не делится на n + 4.
Положительные числа a, b, c, d таковы, что a ≤ b ≤ c ≤ d и a + b + c + d ≥ 1. Докажите, что a² + 3b² + 5c² + 7d² ≥ 1.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |