ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

  а) Можно ли расположить пять деревянных кубов в пространстве так, чтобы каждый имел общую часть грани с каждым? (Общая часть должна быть многоугольником.)
  б) Тот же вопрос про шесть кубов.

   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 204]      



Задача 79337

Темы:   [ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
[ Куб ]
Сложность: 3+
Классы: 8

Куб 3×3×3 составлен из 14 белых и 13 чёрных кубиков со стороной 1. Столбик – это три кубика, стоящих рядом вдоль одного направления: ширины, длины или высоты. Может ли быть так, что в каждом столбике
  а) нечётное количество белых кубиков?
  б) нечётное количество чёрных кубиков?

Прислать комментарий     Решение

Задача 98094

Темы:   [ Наглядная геометрия в пространстве ]
[ Необычные конструкции ]
[ Куб ]
Сложность: 3+
Классы: 8,9,10

  а) Можно ли расположить пять деревянных кубов в пространстве так, чтобы каждый имел общую часть грани с каждым? (Общая часть должна быть многоугольником.)
  б) Тот же вопрос про шесть кубов.

Прислать комментарий     Решение

Задача 98307

Темы:   [ Параллельность прямых и плоскостей ]
[ Уравнение плоскости ]
[ Куб ]
[ Скалярное произведение ]
[ Двоичная система счисления ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?

Прислать комментарий     Решение

Задача 107675

Темы:   [ Развертка помогает решить задачу ]
[ Разрезания на параллелограммы ]
[ Куб ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Шестью одинаковыми параллелограммами площади 1 оклеили кубик с ребром 1. Можно ли утверждать, что все параллелограммы — квадраты? Можно ли утверждать, что все они — прямоугольники?
Прислать комментарий     Решение


Задача 107817

Темы:   [ Параллельность прямых и плоскостей ]
[ Уравнение плоскости ]
[ Куб ]
[ Двоичная система счисления ]
[ Скалярное произведение ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

В пространстве даны восемь параллельных плоскостей таких, что расстояния между каждыми двумя соседними равны. На каждой из плоскостей выбирается по точке. Могут ли выбранные точки оказаться вершинами куба.

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .