ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Петя заметил, что у всех его 25 одноклассников различное число друзей в этом классе. Сколько друзей у Пети? ![]() |
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 222]
Вася нарисовал карандашом разбиение клетчатого прямоугольника на прямоугольники размером 3×1 (тримино), закрасил ручкой центральную клетку каждого из получившихся прямоугольников, после чего стер карандашные линии. Всегда ли можно восстановить исходное разбиение?
a) хотя бы один орех будет съеден; б) все орехи не будут съедены.
По доске $n$×$n$ прошла ладья, побывав в каждой клетке один раз, причем каждый её ход был ровно на одну клетку. Клетки занумерованы от 1 до $n^2$ в порядке прохождения ладьи. Пусть $M$ – максимальная разность между номерами соседних (по стороне) клеток. Каково наименьшее возможное значение $M$?
Петя заметил, что у всех его 25 одноклассников различное число друзей в этом классе. Сколько друзей у Пети?
На доске нарисовали выпуклый многоугольник. В нём провели несколько диагоналей, не пересекающихся внутри него, так что он оказался разбит на треугольники. Затем возле каждой вершины записали число треугольников, примыкающих к этой вершине, после чего все диагонали стерли. Можно ли по оставшимся возле вершин числам восстановить стёртые диагонали?
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 222] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |