ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Квадрат целого числа имеет вид ...09 (оканчивается цифрами 0 и 9). Докажите, что третья справа цифра чётна.

   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 266]      



Задача 98401

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

Квадрат целого числа имеет вид ...09 (оканчивается цифрами 0 и 9). Докажите, что третья справа цифра чётна.

Прислать комментарий     Решение

Задача 105129

Темы:   [ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Найдите все целые числа x и y, удовлетворяющие уравнению  x4 – 2y² = 1.

Прислать комментарий     Решение

Задача 109144

Темы:   [ Уравнения в целых числах ]
[ Квадратные уравнения. Формула корней ]
[ Разложение на множители ]
Сложность: 3+
Классы: 9,10

Решить уравнение  x² + 3x + 9 = 9n²  в целых числах.

Прислать комментарий     Решение

Задача 109864

Темы:   [ НОД и НОК. Взаимная простота ]
[ Квадратные уравнения. Теорема Виета ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Натуральные числа m и n таковы, что  НОК(m, n) + НОД(m, n) = m + n.  Докажите, что одно из чисел m или n делится на другое.

Прислать комментарий     Решение

Задача 110020

Темы:   [ Разбиения на пары и группы; биекции ]
[ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Докажите, что числа от 1 до 15 нельзя разбить на две группы: A из двух чисел и B из 13 чисел так, чтобы сумма чисел в группе B была равна произведению чисел в группе A.

Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 266]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .