ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите все пары целых чисел  (x, y),  для которых числа  x³ + y  и  x + y³  делятся на  x² + y².

   Решение

Задачи

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 366]      



Задача 78260

Темы:   [ Четность и нечетность ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 7,8,9

Доказать, что не существует целых чисел a, b, c, d, удовлетворяющих равенствам:
  abcd – a = 1961,
  abcd – b = 961,
  abcd – c = 61,
  abcd – d = 1.

Прислать комментарий     Решение

Задача 97822

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Через P(x) обозначается произведение всех цифр натурального числа x, через S(x) – сумма цифр числа x.
Сколько решений имеет уравнение:   P(P(x)) + P(S(x)) + S(P(x)) + S(S(x)) = 1984 ?

Прислать комментарий     Решение

Задача 98174

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10

Автор: Перлин А.

Найти все такие числа вида 2n (n натурально), что при вычёркивании первой цифры их десятичной записи снова получится степень двойки.

Прислать комментарий     Решение

Задача 98440

Темы:   [ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 7,8,9

Найдите все пары целых чисел  (x, y),  для которых числа  x³ + y  и  x + y³  делятся на  x² + y².

Прислать комментарий     Решение

Задача 98446

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9

На плоскости проведено n прямых. Каждая пересекается ровно с 1999 другими. Найдите все n, при которых это возможно.

Прислать комментарий     Решение

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 366]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .