ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 366]      



Задача 64609

Темы:   [ Арифметические действия. Числовые тождества ]
[ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Существуют ли такие натуральные числа a, b, c, d, что  a/b + c/d = 1,  a/d + c/b = 2008?

Прислать комментарий     Решение

Задача 65334

Темы:   [ Математическая статистика ]
[ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10,11

Ваня написал на доске число 1, а затем ещё несколько чисел. Как только Ваня пишет очередное число, Митя вычисляет медиану уже имеющегося набора чисел и записывает его себе в тетрадку. В некоторый момент в Митиной тетради записаны числа:  1; 2; 3; 2,5; 3; 2,5; 2; 2; 2; 2,5.
  а) Какое число записано на доске четвёртым?

  б) Какое число записано на доске восьмым?

Прислать комментарий     Решение

Задача 78517

Темы:   [ Квадратные корни (прочее) ]
[ Уравнения в целых числах ]
[ Итерации ]
Сложность: 4-
Классы: 8,9

Решить в целых числах уравнение   = m.

Прислать комментарий     Решение

Задача 97875

Темы:   [ Правильные многоугольники ]
[ Уравнения в целых числах ]
Сложность: 4-
Классы: 8,9

  Радиус OM круга равномерно вращается, поворачиваясь в секунду на угол 360°/N  (N – натуральное число, большее 3). В начальный момент он занимал положение OM0, через секунду – OM1, ещё через две секунды после этого (то есть через три секунды после начала) – OM2, ещё через три секунды после этого – OM3, и т. д., ещё через  N – 1  секунду после ОМN–2  – OMN–1.
  При каких N эти положения радиуса делят круг на N равных секторов?
  а) Верно ли, что к числу таких N относятся все степени двойки?
  б) Относятся ли к числу таких N какие-либо числа, не являющиеся степенями двойки?

Прислать комментарий     Решение

Задача 109649

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Уравнения в целых числах ]
[ Целочисленные и целозначные многочлены ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Существуют ли два квадратных трёхчлена  ax² + bx + c  и  (a + 1)x² + (b + 1)x + (c + 1)  с целыми коэффициентами, каждый из которых имеет по два целых корня?

Прислать комментарий     Решение

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 366]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .