Версия для печати
Убрать все задачи
Функции f(x) и g(x) определены на множестве целых чисел, не превосходящих по модулю 1000. Обозначим через m число пар (x, y), для которых
f(x) = g(y), через n – число пар, для которых f(x) = f(y), а через k – число пар, для которых g(x) = g(y). Докажите, что 2m ≤ n + k.

Решение
Трапеция ABCD такова, что на её боковых сторонах AD и BC существуют такие точки P и Q соответственно, что ∠APB = ∠CPD, ∠AQB = ∠CQD.
Докажите, что точки P и Q равноудалены от точки пересечения диагоналей трапеции.


Решение
Из точки O, лежащей внутри выпуклого n-угольника A1A2...An, проведены отрезки ко всем вершинам: OA1, OA2, ..., OAn . Оказалось, что все углы между этими отрезками и прилегающими к ним сторонами n-угольника – острые, причём
∠OA1An ≤ ∠OA1A2, ∠OA2A1 ≤ ∠OA2A3, ...,
∠OAn–1An–2 ≤ ∠OAn–1An, ∠OAnAn–1 ≤ ∠OAnA1. Докажите, что O – центр окружности, вписанной в n-угольник.

Решение