ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 374]      



Задача 108952

Темы:   [ Угол между касательной и хордой ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

Пусть ABCD – выпуклый четырёхугольник, M и N – середины его сторон AD и BC соответственно. Точки A , B , M и N лежат на одной окружности, прямая AB касается описанной окружности треугольника BMC . Докажите, что она также касается описанной окружности треугольника AND .
Прислать комментарий     Решение


Задача 116162

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вписанные четырехугольники (прочее) ]
[ Радикальная ось ]
Сложность: 4
Классы: 10,11

Автор: Ивлев Ф.

Дана неравнобокая трапеция ABCD  (AB || CD).  Окружность, проходящая через точки A и B, пересекает боковые стороны трапеции в точках P и Q, а диагонали – в точках M и N. Докажите, что прямые PQ, MN и CD пересекаются в одной точке.

Прислать комментарий     Решение

Задача 116837

Темы:   [ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Неравенства с углами ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 10,11

На сторонах AB и BC треугольника ABC выбраны соответственно точки C1 и A1, отличные от вершин. Пусть K – середина A1C1, а I – центр окружности, вписанной в треугольник ABC. Оказалось, что четырёхугольник A1BC1I вписанный. Докажите, что угол AKC тупой.

Прислать комментарий     Решение

Задача 116070

Темы:   [ Вневписанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Вспомогательная окружность ]
Сложность: 4
Классы: 8,9

На сторонах AB и CD квадрата ABCD взяты точки K и M соответственно, а на диагонали AC – точка L так, что ML = KL. Пусть P – точка пересечения отрезков MK и BD. Найдите угол KPL.

Прислать комментарий     Решение

Задача 52486

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4+
Классы: 8,9

В треугольнике ABC угол C — тупой. На стороне AB отмечены точки E и H, на сторонах AC и BC — точки K и M соответственно. Оказалось, что AH = AC, BE = BC, AE = AK, BH = BM. Докажите, что точки E, H, K, M лежат на одной окружности.

Прислать комментарий     Решение


Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 374]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .