ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть A1, B1 и C1 — проекции точки Лемуана K треугольника ABC на стороны BC, CA и AB. Докажите, что медиана AM треугольника ABC перпендикулярна прямой B1C1. ![]() ![]() Замостите плоскость одинаковыми а) пятиугольниками; б) семиугольниками.
![]() ![]() ![]() Точки A1 и A2, B1 и B2, C1 и C2 лежат на сторонах BC, CA, AB треугольника ABC. а) Докажите, что если эти точки являются точками пересечения сторон треугольника ABC с продолжениями сторон треугольника A'B'C', полученного из треугольника ABC при гомотетии с центром в точке Лемуана K, то точки A1, B2, B1, C2, C1, A2 лежат на одной окружности (окружность Тукера). б) Докажите, что если отрезки A1B2, B1C2 и C1A2 равны и антипараллельны сторонам AB, BC и CA, то точки A1, B2, B1, C2, C1, A2 лежат на одной окружности. ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 233]
an = c1x1n + c2x2n (n = 0, 1, 2,...).
an = (c1 + c2n)x0n (n = 0, 1, 2,...).
Последовательность {an} определяется правилами: a0 = 9,
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 233] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |