Страница:
<< 60 61 62 63
64 65 66 >> [Всего задач: 366]
Существуют ли такие действительные числа b и c, что каждое из уравнений x² + bx + c = 0 и 2x² + (b + 1)x + c + 1 = 0 имеет по два целых корня?
|
|
Сложность: 4- Классы: 8,9,10
|
Пусть a, b и c – попарно взаимно простые натуральные числа. Найдите все возможные значения
, если известно, что это число целое.
|
|
Сложность: 4- Классы: 7,8,9
|
Найдите все такие пары простых чисел p и q, что p³ – q5 = (p + q)².
|
|
Сложность: 4- Классы: 10,11
|
Действительные числа x и y таковы, что для любых различных простых нечётных p и q число xp + yq рационально.
Докажите, что x и y – рациональные числа.
|
|
Сложность: 4- Классы: 8,9,10
|
Найдите все простые p, для каждого из которых существуют такие натуральные x и y, что px = y³ + 1.
Страница:
<< 60 61 62 63
64 65 66 >> [Всего задач: 366]