Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 787]
|
|
Сложность: 3 Классы: 9,10,11
|
Пусть $X$ — некоторая фиксированная точка на стороне $AC$ треугольника $ABC$ ($X$ отлична от $A$ и $C$). Произвольная окружность, проходящая через $X$ и $B$, пересекает отрезок $AC$ и описанную окружность треугольника $ABC$ в точках $P$ и $Q$, отличных от $X$ и $B$. Докажите, что все возможные прямые $PQ$ проходят через одну точку.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Окружность, вписанная в треугольник $ABC$, касается его сторон $AB$, $BC$, $AC$ в точках $C_{1}$, $A_{1}$, $B_{1}$ соответственно. Пусть $A'$ – точка, симметричная $A_{1}$ относительно прямой $B_{1}C_{1}$; аналогично определяется точка $C'$. Прямые $A'C_{1}$ и $C'A_{1}$ пересекаются в точке $D$. Докажите, что $BD\parallel AC$.
Для выпуклого четырёхугольника
ABCD соблюдено условие:
AB +
CD =
BC +
DA.
Докажите, что окружность, вписанная в
ABC, касается окружности,
вписанной в
ACD.
Дана прямая
l, перпендикулярная отрезку
AB и пересекающая его. Для любой
точки
M прямой
l строится такая точка
N, что
NAB = 2
MAB;
NBA = 2
MBA. Доказать, что абсолютная величина разности
AN -
BN не
зависит от выбора точки
M на прямой
l.
|
|
Сложность: 3 Классы: 9,10,11
|
Треугольник ABC вписан в окружность. Через точку A проведены хорды, пересекающие сторону BC в точках K и L и дугу BC в точках M и N.
Докажите, что если вокруг четырёхугольника KLNM можно описать окружность, то треугольник ABC равнобедренный.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 787]