ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 787]      



Задача 66961

Темы:   [ Вписанные и описанные окружности ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Ромбы. Признаки и свойства ]
Сложность: 3
Классы: 8,9,10

В выпуклом четырехугольнике $ABCD$ центры описанной и вписанной окружностей треугольника $ABC$ совпадают соответственно с центрами вписанной и описанной окружностей треугольника $ADC$. Известно, что $AB=1$. Найдите длины остальных сторон и углы четырехугольника.
Прислать комментарий     Решение


Задача 66973

Темы:   [ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9,10,11

Пусть $O$ – центр описанной окружности треугольника $ABC$. На стороне $BC$ нашлись точки $X$ и $Y$ такие, что $AX=BX$ и $AY=CY$. Докажите, что окружность, описанная около треугольника $AXY$, проходит через центры описанных окружностей треугольников $AOB$ и $AOC$.
Прислать комментарий     Решение


Задача 35074

Темы:   [ Вписанные и описанные окружности ]
[ Средняя линия трапеции ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 9,10,11

Внутри треугольника ABC нашлись такие точки P и Q, что точка P удалена от прямых AB, BC, CA на расстояния 6, 7 и 12 соответственно, а точка Q удалена от прямых AB, BC, CA на расстояния 10, 9 и 4 соответственно. Найдите радиус вписанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 35458

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Стороны BC, CA, AB треугольника ABC касаются вписанной в него окружности в точках D, E, F. Докажите, что треугольник DEF – остроугольный.

Прислать комментарий     Решение

Задача 52656

Темы:   [ Вписанные и описанные окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

В треугольник вписана окружность радиуса 3. Найдите стороны треугольника, если одна из них разделена точкой касания на отрезки, равные 4 и 3.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 787]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .