ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В выпуклом четырёхугольнике ABCD AD = АВ + CD. Оказалось, что биссектриса угла А проходит через середину стороны ВС. ![]() ![]() Какое наибольшее количество белых и чёрных пешек можно расставить на клетчатой доске 9×9 (пешку, независимо от её цвета, можно ставить на любую клетку доски) так, чтобы никакая из них не била никакую другую (в том числе и своего цвета)? Белая пешка бьёт две соседние по диагонали клетки на соседней горизонтали с бóльшим номером, а чёрная – две соседние по диагонали клетки на соседней горизонтали с меньшим номером (см. рисунок). ![]() ![]() ![]() Докажите, что если в треугольной пирамиде любые два трехгранных угла равны или симметричны, то все грани этой пирамиды равны. ![]() ![]() |
Страница: << 1 2 3 4 >> [Всего задач: 16]
Пусть I – центр сферы, вписанной в тетраэдр ABCD, A', B', C', D' – центры описанных сфер тетраэдров IBCD, ICDA, IDBA, IABC соответственно.
Две окружности радиуса 1 пересекаются в точках X, Y, расстояние между которыми тоже равно 1. Из точки C одной окружности проведены к другой касательные CA, CB, вторично пересекающие первую окружность в точках B', A'. Прямые AA' и BB' пересекаются в точке Z. Найдите угол XZY.
Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ.
Радиусы описанной и вписанной окружностей треугольника ABC равны R и r; O, I – центры этих окружностей. Внешняя биссектриса угла C пересекает прямую AB в точке P. Точка Q – проекция точки P на прямую OI. Найдите расстояние OQ.
Страница: << 1 2 3 4 >> [Всего задач: 16] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |