Страница:
<< 58 59 60 61
62 63 64 >> [Всего задач: 367]
|
|
Сложность: 4- Классы: 10,11
|
Существуют ли такие
а) 4 различных натуральных числа;
б) 5 различных натуральных чисел;
в) 5 различных целых чисел;
г) 6 различных целых чисел,
что сумма каждых трёх из них – простое число?
|
|
Сложность: 4- Классы: 7,8,9
|
В строку выписано 23 натуральных числа (не обязательно различных). Докажите, что между ними можно так расставить скобки, знаки сложения и умножения, что значение полученного выражения будет делиться на 2000 нацело.
|
|
Сложность: 4- Классы: 7,8,9
|
У Пети всего 28 одноклассников. У каждых двух из 28 различное число друзей в
этом классе. Сколько друзей у Пети?
|
|
Сложность: 4- Классы: 8,9,10
|
Леша поставил в клетки таблицы 22×22 натуральные числа от 1 до 22².
Верно ли, что Олег может выбрать такие две клетки, соседние по стороне или вершине, что сумма чисел, стоящих в этих клетках, делится на 4?
|
|
Сложность: 4- Классы: 5,6,7
|
Каждый из учеников класса занимается не более чем в двух кружках, причём для любой пары учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимается не менее ⅔ всего класса.
Страница:
<< 58 59 60 61
62 63 64 >> [Всего задач: 367]