ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Бутырин Б.

Дано натуральное число $n$. Можно ли представить многочлен $x(x-1)\dots(x-n)$ в виде суммы двух кубов многочленов с действительными коэффициентами?

Вниз   Решение


Бизнесмен Борис Михайлович решил устроить с трактористом Васей гонки по шоссе. Поскольку его "Лексус" едет вдесятеро быстрее Васиного трактора, он дал Васе фору и выехал через час после Васи. После того, как Васин трактор проехал ровно половину запланированной трассы, у него отвалилась рессора, поэтому оставшуюся часть пути Вася проехал вдвое медленнее, чем первую. В результате встречи с Васиной рессорой Борису Михайловичу пришлось заехать в оказавшийся рядом сервис на 4 часа, после чего он продолжил путь вдвое медленнее, чем раньше. Докажите, что в результате он отстал от Васи не менее, чем на час.

ВверхВниз   Решение


За круглым столом сидят 40 человек. Может ли случиться, что у каждых двух из них, между которыми сидит чётное число человек, есть за столом общий знакомый, а у каждых двух, между которыми сидит нечётное число человек, общего знакомого нет?

ВверхВниз   Решение


Есть $N$ удавов, их пасти имеют размеры $1$ см, $2$ см, $\dots$, $N$ см. Каждый удав может заглотить яблоко любого диаметра (в см), не превосходящего размер его пасти. Но по внешнему виду нельзя определить, какая у кого пасть. Вечером смотритель может выдать каждому удаву сколько хочет яблок каких хочет размеров, и за ночь удав заглотит все те из них, что влезают ему в пасть. Какое минимальное количество яблок суммарно смотритель должен вечером выдать удавам, чтобы утром по результату он гарантированно определил размер пасти каждого удава?

ВверхВниз   Решение


Автор: Ивлев Б.М.

Вписанная сфера треугольной пирамиды $SABC$ касается основания $ABC$ в точке $P$, а боковых граней в точках $K$, $M$ и $N$. Прямые $PK$, $PM$, $PN$ пересекают плоскость, проходящую через середины боковых рёбер пирамиды, в точках $K'$, $M'$, $N'$. Докажите, что прямая $SP$ проходит через центр описанной окружности треугольника $K'M'N'$.

Вверх   Решение

Задачи

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 368]      



Задача 109496

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
[ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

Найдите все возрастающие конечные арифметические прогрессии, которые состоят из простых чисел и у которых количество членов больше чем разность прогрессии.

Прислать комментарий     Решение

Задача 116592

Темы:   [ Четность и нечетность ]
[ НОД и НОК. Взаимная простота ]
[ Разложение на множители ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Петя выбрал натуральное число  a > 1  и выписал на доску пятнадцать чисел  1 + a,  1 + a²,  1 + a³,  ...,  1 + a15.  Затем он стёр несколько чисел так, что каждые два оставшихся числа взаимно просты. Какое наибольшее количество чисел могло остаться на доске?

Прислать комментарий     Решение

Задача 60571

Темы:   [ Числа Фибоначчи ]
[ Деление с остатком ]
[ Периодичность и непериодичность ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 9,10,11

Докажите, что для любого натурального m существует число Фибоначчи Fn  (n ≥ 1),  кратное m.

Прислать комментарий     Решение

Задача 64697

Темы:   [ Процессы и операции ]
[ НОД и НОК. Взаимная простота ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 6,7

На окружности отмечены 2014 точек. В одной из них сидит кузнечик, который делает прыжки по часовой стрелке либо на 57 делений, либо на 10. Известно, что он посетил все отмеченные точки, сделав наименьшее количество прыжков длины 10. Какое?

Прислать комментарий     Решение

Задача 65385

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Фольклор

У каждого целого числа от  n + 1  до 2n включительно (n – натуральное) возьмём наибольший нечётный делитель и сложим все эти делители.
Докажите, что получится n².

Прислать комментарий     Решение

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 368]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .