ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На сторонах BC, CA, AB треугольника ABC взяты точки X, Y, Z так, что прямые AX, BY, CZ пересекаются в одной точке O. Докажите, что из отношений  OA : OX, OB : OY, OC : OZ по крайней мере одно не больше 2 и одно не меньше 2.

Вниз   Решение


Какое наибольшее количество чисел можно выбрать из набора 1, 2, ..., 1963 так, чтобы сумма каждых двух выбранных чисел делилась на 26?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 71]      



Задача 58268

Темы:   [ Покрытия ]
[ Системы отрезков, прямых и окружностей ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 5-
Классы: 8,9

Отрезок длиной 1 покрыт несколькими лежащими на нем отрезками. Докажите, что среди них можно выбрать несколько попарно непересекающихся отрезков, сумма длин которых не меньше 0,5.
Прислать комментарий     Решение


Задача 73565

Темы:   [ Покрытия ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 5-
Классы: 8,9,10

Любую конечную систему точек плоскости можно покрыть несколькими непересекающимися кругами, сумма диаметров которых меньше количества точек и расстояние между любыми двумя из которых больше 1. Докажите это.

Расстояние между двумя кругами — это расстояние между их ближайшими точками.
Прислать комментарий     Решение


Задача 58267

Тема:   [ Покрытия ]
Сложность: 5
Классы: 8,9

На отрезке длиной 1 расположено несколько отрезков, полностью его покрывающих. Докажите, что можно выбросить некоторые из них так, чтобы оставшиеся по-прежнему покрывали отрезок и сумма их длин не превосходила 2.
Прислать комментарий     Решение


Задача 58269

Тема:   [ Покрытия ]
Сложность: 5
Классы: 8,9

Дан выпуклый пятиугольник, все углы которого тупые. Докажите, что в нем найдутся две такие диагонали, что круги, построенные на них как на диаметрах, полностью покроют весь пятиугольник.
Прислать комментарий     Решение


Задача 58271

Тема:   [ Покрытия ]
Сложность: 5
Классы: 8,9

Прожектор освещает угол величиной 90o. Докажите, что в любых четырех заданных точках можно разместить 4 прожектора так, что они осветят всю плоскость.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 71]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .