Страница:
<< 49 50 51 52 53
54 55 >> [Всего задач: 275]
|
|
Сложность: 4 Классы: 8,9,10,11
|
На хорде AC окружности ω выбрали точку B. На отрезках AB и BC как на диаметрах построили окружности ω1 и ω2 с центрами O1 и O2, которые пересекают ω второй раз в точках D и E соответственно. Лучи O1D и O2E пересекаются в точке F. Лучи AD и CE пересекаются в точке G.
Докажите, что прямая FG проходит через середину AC.
Две окружности пересекаются в точках A и B. Третья окружность касается их обеих и пересекает прямую AB в точках C и D.
Докажите, что касательные к ней в этих точках параллельны общим касательным к двум первым окружностям.
|
|
Сложность: 4 Классы: 10,11
|
Окружности Ω1 и Ω2 пересекаются в точках A и B. Через точку B проведена прямая, вторично пересекающая Ω1 и Ω2 в точках K и M соответственно. Прямая l1 касается Ω1 в точке Q и параллельна прямой AM. R – вторая точка пересечения прямой QA с Ω2. Докажите, что
а) касательная l2, проведённая к Ω2 в точке R, параллельна AK.;
б) прямые l1, l2 и K имеют общую точку.
Пусть BM – медиана остроугольного треугольника ABC.
Касательная в точке A к описанной окружности треугольника ABM, и касательная в точке C к описанной окружности треугольника BCM, пересекаются в точке D. Докажите, что точка K, симметричная точке D относительно прямой AC лежит на прямой BM.
|
|
Сложность: 4 Классы: 10,11
|
Остроугольный треугольник ABC вписан в окружность ω. Касательные к ω, проведённые через точки B и C, пересекают касательную к ω, проведённую через точку A, в точках K и L соответственно. Прямая, проведённая через K параллельно AB, пересекается с прямой, проведённой через L параллельно AC, в точке P. Докажите, что BP = CP.
Страница:
<< 49 50 51 52 53
54 55 >> [Всего задач: 275]