Страница:
<< 49 50 51 52 53 54
55 >> [Всего задач: 275]
|
|
Сложность: 4+ Классы: 9,10,11
|
Вписанная окружность неравнобедренного треугольника ABC касается сторон AB, BC и ABC в точках C1, A1 и B1 соответственно. Описанная окружность треугольника A1BC1 пересекает прямые B1A1 и B1C1 в точках A0 и C0 соответственно. Докажите, что ортоцентр H треугольника A0BC0, центр I вписанной окружности треугольника ABC и середина M стороны AC лежат на одной прямой.
|
|
Сложность: 6- Классы: 9,10,11
|
Даны две окружности, касающиеся внутренним образом в
точке
N . Хорды
BA и
BC внешней окружности касаются
внутренней в точках
K и
M соответственно. Пусть
Q
и
P – середины дуг
AB и
BC , не содержащих точку
N . Окружности, описанные около треугольников
BQK и
BPM , пересекаются в точке
B1
. Докажите, что
BPB1
Q – параллелограмм.
|
|
Сложность: 4- Классы: 9,10
|
Остроугольный треугольник ABC вписан в окружность Ω. Касательные,
проведённые к Ω в точках B и C, пересекаются в точке P.
Точки D и E – основания перпендикуляров, опущенных из точки P на прямые AB и AC. Докажите, что точка пересечения высот треугольника ADE является серединой отрезка BC.
|
|
Сложность: 4- Классы: 9,10,11
|
Остроугольный равнобедренный треугольник ABC (AB = AC) вписан в окружность с центром O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается описанной окружности ω треугольника B'OC.
|
|
Сложность: 4- Классы: 7,8,9
|
Вокруг равнобедренного треугольника ABC с основанием AC описана окружность ω. Точка F – ортоцентр треугольника ABC; продолжение высоты CE пересекает ω в точке G. Докажите, что высота AD является касательной к описанной окружности треугольника GBF.
Страница:
<< 49 50 51 52 53 54
55 >> [Всего задач: 275]