Страница:
<< 49 50 51 52 53 54 55 [Всего задач: 275]
Прямые, касающиеся окружности Ω в точках A и B, пересекаются в точке O. Точка I – центр Ω. На меньшей дуге AB окружности Ω выбрана точка C, отличная от середины дуги. Прямые AC и OB пересекаются в точке D, а прямые BC и OA – в точке E. Докажите, что центры описанных
окружностей треугольников ACE, BCD и OCI лежат на одной прямой.
|
|
Сложность: 5- Классы: 8,9,10
|
В треугольнике ABC отметили точки A', B' касания сторон BC, AC c вписанной окружностью и точку G пересечения отрезков AA' и BB'. После этого сам треугольник стерли. Восстановите его с помощью циркуля и линейки.
|
|
Сложность: 5 Классы: 10,11
|
Пусть AA1, BB1 и
CC1 – высоты неравнобедренного остроугольного
треугольника ABC; описанные окружности треугольников ABC и
A1B1C, вторично
пересекаются в точке P, Z – точка пересечения касательных к описанной окружности треугольника ABC, проведённых в точках A и B. Докажите, что прямые AP, BC и ZC1 пересекаются в одной точке.
|
|
Сложность: 5- Классы: 9,10,11
|
Неравнобедренный треугольник ABC вписан в окружность с центром O и описан около окружности с центром I. Точка B', симметричная точке B относительно прямой OI, лежит внутри угла ABI. Докажите, что касательные к описанной окружности треугольника BB'I, проведённые в точках B' и I, пересекаются на прямой AC.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В треугольнике ABC AB = BC, ∠B = 20°. Точка M на основании AC такова, что AM : MC = 1 : 2, точка H – проекция C на BM. Найдите угол AHB.
Страница:
<< 49 50 51 52 53 54 55 [Всего задач: 275]