Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 993]
|
|
Сложность: 3+ Классы: 9,10,11
|
Квадрат ABCD вписан в окружность. Точка M лежит на дуге BC, прямая AM пересекает BD в точке P, прямая DM пересекает AC в точке Q.
Докажите, что площадь четырёхугольника APQD равна половине площади квадрата.
Вершину A параллелограмма ABCD соединили отрезками с серединами сторон BC и CD. Один из этих отрезков оказался вдвое длиннее другого. Определите, каким является угол ВАD: острым, прямым или тупым.
|
|
Сложность: 3+ Классы: 8,9,10
|
Квадрат ABCD и равносторонний треугольник MKL расположены так, как это показано на рисунке. Найдите угол PQD.
|
|
Сложность: 3+ Классы: 9,10,11
|
Внутри параллелограмма ABCD выбрана точка Р так, что ∠АРВ + ∠СРD = 180°. Докажите, что ∠РВC = ∠РDC.
|
|
Сложность: 3+ Классы: 10,11
|
В параллелограмме АВСD точка Е – середина стороны AD, точка F – основание перпендикуляра, опущенного из вершины В на прямую СЕ.
Найдите площадь треугольника ABF, если АВ = а, ∠ВАF = α.
Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 993]