ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Паук сплёл паутину, и во все её 12 узелков попалось по мухе или комару. При этом каждое насекомое оказалось соединено отрезком паутины ровно с двумя комарами. Нарисуйте пример, как это могло быть (написав внутри узелков буквы М и К).

Вниз   Решение


В равнобедренном треугольнике $ABC$ ($AB=AC$) проведена высота $AA_0$. Окружность $\gamma$ с центром в середине $AA_0$ касается прямых $AB$ и $AC$. Из точки $X$ прямой $BC$ проведены две касательные к $\gamma$. Докажите, что эти касательные высекают на прямых $AB$ и $AC$ равные отрезки.

ВверхВниз   Решение


Сеня не умеет писать некоторые буквы и всегда в них ошибается. В слове ТЕТРАЭДР он сделал бы пять ошибок, в слове ДОДЕКАЭДР – шесть, а в слове ИКОСАЭДР – семь. А сколько ошибок он сделает в слове ОКТАЭДР?

ВверхВниз   Решение


Два пирата играли на золотые монеты. Сначала первый проиграл половину своих монет (отдал второму), потом второй проиграл половину своих, потом снова первый проиграл половину своих. В результате у первого оказалось 15 монет, а у второго — 33. Сколько монет было у первого пирата до начала игры?

ВверхВниз   Решение


Автор: Тригуб А.

В треугольнике $ABC$ $N$ – середина дуги $ABC$ описанной окружности треугольника, $NP$ и $NT$ – касательные к вписанной окружности. Прямые $BP$ и $BT$ пересекают второй раз описанную окружность треугольника в точках $P_1$ и $T_1$ соответственно. Докажите, что $PP_1=TT_1$.

ВверхВниз   Решение


Даны три окружности. Первая и вторая пересекаются в точках $A_0$ и $A_1$, вторая и третья – в точках $B_0$ и $B_1$, третья и первая – в точках $C_0$ и $C_1$. Пусть $O_{i,j,k}$ – центр описанной окружности треугольника $A_i B_j C_k$. Через все пары точек вида $O_{i,j,k}$ и $O_{1-i,1-j,1-k}$ провели прямые. Докажите, что эти 4 прямые пересекаются в одной точке или параллельны.

Вверх   Решение

Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 501]      



Задача 55347

Темы:   [ Теорема косинусов ]
[ Ромбы. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Точка C лежит на стороне MN ромба KLMN, причём CN = 2CM и угол MNK равен 120o. Найдите отношение косинусов углов CKN и CLM.

Прислать комментарий     Решение


Задача 102318

Темы:   [ Вычисление длин дуг ]
[ Ромбы. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Докажите или опровергните следующее утверждение: периметр ромба с диагоналями длины 1 и 3 больше длины окружности радиуса 1.
Прислать комментарий     Решение


Задача 53506

Темы:   [ Параллелограмм Вариньона ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В выпуклом четырёхугольнике ABCD диагонали перпендикулярны, а отрезок, соединяющий середины сторон AB и CD, равен 1. Найдите отрезок, соединяющий середины сторон BC и AD.

Прислать комментарий     Решение


Задача 54127

Темы:   [ Средняя линия треугольника ]
[ Ромбы. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Острый угол A ромба ABCD равен 45o, проекция стороны AB на сторону AD равна 12. Найдите расстояние от центра ромба до стороны CD.

Прислать комментарий     Решение


Задача 54703

Темы:   [ Теорема косинусов ]
[ Ромбы. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Точки M и N лежат на сторонах соответственно AD и BC ромба ABCD, причём DM : AM = BN : NC = 2 : 1. Найдите MN, если известно, что сторона ромба равна a, а $ \angle$BAD = 60o.

Прислать комментарий     Решение


Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .