Страница:
<< 50 51 52 53
54 55 56 >> [Всего задач: 501]
Квадрат ABCD и окружность пересекаются в восьми точках так, что образуются четыре криволинейных треугольника: AEF, BGH, CIJ, DKL (EF, GH, IJ, KL – дуги окружности). Докажите, что
а) сумма длин дуг EF и IJ равна сумме длин дуг GH и KL;
б) сумма периметров криволинейных треугольников AEF и CIJ равна сумме периметров криволинейных треугольников BGH и DKL.
Окружность радиуса
R касается смежных сторон
AB и
AD квадрата
ABCD , пересекает сторону
BC
в точке
E и проходит через точку
C . Найдите
BE .
Прямоугольный лист бумаги ABCD согнули так, как показано на рисунке. Найдите отношение DK : AB, если C1 –
середина AD.
В треугольнике ABC с прямым углом C проведены высота CD, и биссектриса CF, DK и DL – биссектрисы треугольников BDC и ADC.
Докажите, что CLFK – квадрат.
Площадь прямоугольника равна
120o, синус угла между диагональю
и одной из сторон равен
. Найдите стороны прямоугольника.
Страница:
<< 50 51 52 53
54 55 56 >> [Всего задач: 501]