ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 507]      



Задача 79429

Темы:   [ Пятиугольники ]
[ Вписанные и описанные многоугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

Существует ли пятиугольник со сторонами 3, 4, 9, 11 и 13 см, в который можно вписать окружность?
Прислать комментарий     Решение


Задача 97856

Темы:   [ Инварианты ]
[ Правильные многоугольники ]
[ Четность и нечетность ]
Сложность: 4
Классы: 7,8,9

Автор: Фольклор

В правильном десятиугольнике проведены все диагонали. Возле каждой вершины и возле каждой точки пересечения диагоналей поставлено число +1 (рассматриваются только сами диагонали, а не их продолжения). Разрешается одновременно изменить все знаки у чисел, стоящих на одной стороне или на одной диагонали. Можно ли с помощью нескольких таких операций изменить все знаки на противоположные?

Прислать комментарий     Решение

Задача 98030

Темы:   [ Разрезания на параллелограммы ]
[ Шестиугольники ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9,10

Правильный шестиугольник разрезан на N равновеликих параллелограммов. Доказать, что N делится на 3.

Прислать комментарий     Решение

Задача 108234

Темы:   [ Против большей стороны лежит больший угол ]
[ Пятиугольники ]
[ Многоугольники (неравенства) ]
Сложность: 4
Классы: 7,8,9

Автор: Кноп К.А.

Существует ли выпуклый пятиугольник (все углы меньше 180o ) ABCDE , у которого все углы ABD , BCE , CDA , DEB и EAC – тупые?
Прислать комментарий     Решение


Задача 109642

Темы:   [ Внутренность и внешность. Лемма Жордана ]
[ Произвольные многоугольники ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10,11

Автор: Мусин О.

Даны многоугольник, прямая l и точка P на прямой l в общем положении (то есть все прямые, содержащие стороны многоугольника, пересекают l в различных точках, отличных от P). Отметим те вершины многоугольника, для каждой из которых прямые, на которых лежат выходящие из неё стороны многоугольника, пересекают l по разные стороны от точки P. Докажите, что точка P лежит внутри многоугольника тогда и только тогда, когда по каждую сторону от l отмечено нечётное число вершин.

Прислать комментарий     Решение

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 507]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .