ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 507]      



Задача 55654

Темы:   [ Композиции симметрий ]
[ Произвольные многоугольники ]
Сложность: 4
Классы: 8,9

Из точки O на плоскости выходят 2n прямых. Могут ли они служить серединными перпендикулярами к сторонам некоторого 2n-угольника?

Прислать комментарий     Решение


Задача 52855

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
Сложность: 4+
Классы: 8,9

В шестиугольнике ABCDEF известно, что AB || DE, BC || EF, CD || FA и AD = BE = CF. Докажите, что около этого шестиугольника можно описать окружность.

Прислать комментарий     Решение


Задача 56500

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
Сложность: 4+
Классы: 8,9

Шестиугольник ABCDEF вписан в окружность радиуса R с центром O, причём  AB = CD = EF = R.  Докажите, что точки попарного пересечения описанных окружностей треугольников BOC, DOE и FOA, отличные от точки O, являются вершинами правильного треугольника со стороной R.

Прислать комментарий     Решение

Задача 61158

Темы:   [ Правильные многоугольники ]
[ Вычисления. Метрические соотношения в многоугольниках ]
[ Момент инерции ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4+
Классы: 10,11

Правильный n-угольник вписан в единичную окружность. Докажите, что
а) сумма квадратов длин всех сторон и всех диагоналей равна n²;
б) сумма длин всех сторон и всех диагоналей равна  n ctg π/2n;
в) произведение длин всех сторон и всех диагоналей равно  nn/2.

Прислать комментарий     Решение

Задача 66245

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Три точки, лежащие на одной прямой ]
[ Симметрия помогает решить задачу ]
[ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 4+
Классы: 9,10,11

В окружность вписан шестиугольник ABCDEF.  K, L, M, N – точки пересечения пар прямых AB и CD, AC и BD, AF и DE, AE и DF.
Докажите, что если три из этих точек лежат на одной прямой, то и четвёртая точка лежит на этой прямой.

Прислать комментарий     Решение

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 507]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .