ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 507]
Из точки O на плоскости выходят 2n прямых. Могут ли они служить серединными перпендикулярами к сторонам некоторого 2n-угольника?
В шестиугольнике ABCDEF известно, что AB || DE, BC || EF, CD || FA и AD = BE = CF. Докажите, что около этого шестиугольника можно описать окружность.
Шестиугольник ABCDEF вписан в окружность радиуса R с центром O, причём AB = CD = EF = R. Докажите, что точки попарного пересечения описанных окружностей треугольников BOC, DOE и FOA, отличные от точки O, являются вершинами правильного треугольника со стороной R.
Правильный n-угольник вписан в единичную окружность. Докажите, что
В окружность вписан шестиугольник ABCDEF. K, L, M, N – точки пересечения пар прямых AB и CD, AC и BD, AF и DE, AE и DF.
Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 507] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |