Страница:
<< 56 57 58 59
60 61 62 >> [Всего задач: 507]
|
|
Сложность: 4 Классы: 7,8,9
|
Выпуклый многоугольник разбит на параллелограммы. Вершину многоугольника,
принадлежащую только одному параллелограмму, назовем хорошей.
Докажите, что хороших вершин не менее трех.
|
|
Сложность: 4 Классы: 8,9,10
|
Дан биллиард в форме правильного 1998-угольника A1A2...A1998. Из середины стороны A1A2 выпустили шар, который, отразившись последовательно от сторон A2A3, A3A4, ..., A1998A1 (по закону "угол падения равен углу отражения"), вернулся в исходную точку. Докажите, что траектория шара – правильный 1998-угольник.
Семиугольник, три угла которого равны по
120
o ,
вписан в окружность. Могут ли все его стороны быть
различными по длине?
Дан треугольник ABC, AA1, BB1 и CC1 – его биссектрисы. Известно, что величины углов A, B и C относятся как 4 : 2 : 1. Докажите, что A1B1 = A1C1.
Замкнутая пятизвенная ломаная образует равноугольную звезду (см. рис.).
Чему равен периметр внутреннего пятиугольника ABCDE, если длина исходной ломаной равна 1?
Страница:
<< 56 57 58 59
60 61 62 >> [Всего задач: 507]