Страница:
<< 83 84 85 86
87 88 89 >> [Всего задач: 508]
|
|
Сложность: 6- Классы: 9,10,11
|
Выпуклый многоугольник обладает следующим свойством: если все прямые, на
которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю
сторону, то полученные прямые образуют многоугольник, подобный исходному,
причём параллельные стороны окажутся пропорциональными. Доказать, что в данный
многоугольник можно вписать окружность.
Постройте четырехугольник по углам и диагоналям.
|
|
Сложность: 2+ Классы: 7,8,9
|
Внутри правильного шестиугольника со стороной 1 расположено 7 точек. Докажите, что среди них найдутся две точки на расстоянии не больше 1.
Сколько диагоналей имеет выпуклый:
а) 10-угольник; б) k-угольник (k > 3)?
|
|
Сложность: 3 Классы: 8,9,10,11
|
На листе бумаги нарисован выпуклый многоугольник M периметра P и площади S. Закрасили каждый круг радиуса R с центром в каждой точке, лежащей внутри этого многоугольника. Найдите площадь закрашенной фигуры.
Страница:
<< 83 84 85 86
87 88 89 >> [Всего задач: 508]