Страница:
<< 13 14 15 16 17 18
19 >> [Всего задач: 92]
|
|
Сложность: 4 Классы: 7,8,9,10
|
Дан набор одинаковых правильных пятиугольников, при вершинах каждого из которых записаны натуральные числа от 1 до 5, как показано на рисунке. Пятиугольники можно поворачивать и переворачивать. Их сложили в стопку (вершина к вершине), и оказалось, что при каждой из пяти вершин суммы чисел одинаковы. Сколько пятиугольников могло быть в этой стопке?
|
|
Сложность: 6 Классы: 9,10,11
|
Стороны выпуклого пятиугольника
ABCDE продолжили так,
что образовалась пятиконечная звезда
AHBKCLDMEN (рис.).
Около треугольников — лучей звезды описали окружности. Докажите,
что пять точек пересечения этих окружностей, отличных от
A,
B,
C,
D,
E, лежат на одной окружности.
|
|
Сложность: 3+ Классы: 8,9,10
|
Прямоугольник ABCD (AB = a, BC = b) сложили так, что получился пятиугольник площади S (C легла в A). Докажите, что S < ¾ ab.
Прямоугольник ABCD с площадью 1 сложили по прямой так, что точка
C совпала с A.
Докажите, что площадь получившегося пятиугольника меньше ¾.
На плоскости отмечена точка O. Можно ли так расположить на плоскости: а) 5 кругов; б) 4 круга, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее двух кругов?
Страница:
<< 13 14 15 16 17 18
19 >> [Всего задач: 92]