Страница:
<< 9 10 11 12 13
14 15 >> [Всего задач: 73]
Каждую сторону выпуклого четырёхугольника продолжили в обе стороны и на всех восьми продолжениях отложили равные между собой отрезки. Оказалось, что получившиеся восемь точек – внешние концы построенных отрезков –
различны и лежат на одной окружности. Докажите, что исходный четырёхугольник – квадрат.
|
|
Сложность: 4 Классы: 9,10,11
|
а) Докажите, что любая прямая, делящая пополам площадь и периметр треугольника, проходит через центр вписанной окружности.
б) Докажите аналогичное утверждение для любого описанного многоугольника.
Из центра O окружности проведены n прямых (n — нечётно).
С помощью циркуля и линейки постройте вписанный в окружность
n-угольник, для которого данные прямые являются серединными
перепендикулярами к n его сторонам.
|
|
Сложность: 6- Классы: 9,10,11
|
Выпуклый многоугольник обладает следующим свойством: если все прямые, на
которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю
сторону, то полученные прямые образуют многоугольник, подобный исходному,
причём параллельные стороны окажутся пропорциональными. Доказать, что в данный
многоугольник можно вписать окружность.
Пятиугольник
ABCDE вписан в окружность. Найдите её длину, если
BC =
CE, площадь треугольника
ADE равна площади треугольника
CDE,
площадь треугольника
ABC равна площади треугольника
BCD, а
3
AC + 2
BD = 5
![$ \sqrt{5}$](show_document.php?id=1409209)
.
Страница:
<< 9 10 11 12 13
14 15 >> [Всего задач: 73]