ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 [Всего задач: 15]      



Задача 64343

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные и описанные окружности ]
[ Поворотная гомотетия (прочее) ]
[ Окружности, вписанные в сегмент ]
[ Теорема синусов ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 5-
Классы: 10,11

Трапеция ABCD вписана в окружность w  (AD || BC).  Окружности, вписанные в треугольники ABC и ABD, касаются оснований трапеции BC и AD в точках P и Q соответственно. Точки X и Y – середины дуг BC и AD окружности w, не содержащих точек A и B соответственно. Докажите, что прямые XP и YQ пересекаются на окружности w.

Прислать комментарий     Решение

Задача 66932

Темы:   [ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Поворотная гомотетия (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
Сложность: 5-
Классы: 9,10,11

Автор: Дидин М.

К вписанной окружности треугольника $ABC$ проведена касательная, параллельная $BC$. Она пересекает внешнюю биссектрису угла $A$ в точке $X$. Точка $Y$ – середина дуги $BAC$ описанной окружности. Докажите, что угол $XIY$ прямой.
Прислать комментарий     Решение


Задача 66697

Темы:   [ Касательные прямые и касающиеся окружности (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательные подобные треугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Поворотная гомотетия (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Две окружности с центрами $O_1$ и $O_2$ касаются внешним образом в точке $T$. К ним проведена общая внешняя касательная, касающаяся первой окружности в точке $A$, а второй – в точке $B$. Общая касательная к окружностям, проведённая в точке $T$, пересекает прямую $AB$ в точке $M$. Пусть $AC$ – диаметр первой окружности. Докажите, что отрезки $CM$ и $AO_2$ перпендикулярны.

Прислать комментарий     Решение

Задача 64350

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Вспомогательные равные треугольники ]
[ Радикальная ось ]
[ Поворотная гомотетия (прочее) ]
Сложность: 4+
Классы: 9,10

На сторонах остроугольного треугольника ABC вне него построены квадраты CAKL и CBMN. Прямая CN пересекает отрезок AK в точке X, а прямая CL пересекает отрезок BM в точке Y. Точка P, лежащая внутри треугольника ABC, является точкой пересечения описанных окружностей треугольников KXN и LYM. Точка S – середина отрезка AB. Докажите, что  ∠ACS = ∠BCP.

Прислать комментарий     Решение

Задача 111687

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательная окружность ]
[ Биссектриса делит дугу пополам ]
[ Гомотетия помогает решить задачу ]
[ Поворотная гомотетия (прочее) ]
Сложность: 4+
Классы: 8,9,10

На сторонах AC и BC неравнобедренного треугольника ABC во внешнюю сторону построены как на основаниях равнобедренные треугольники AB'C и CA'B с одинаковыми углами при основаниях, равными φ. Перпендикуляр, проведённый из вершины C к отрезку A'B', пересекает серединный перпендикуляр к отрезку AB в точке C1. Найдите угол AC1B.

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .