Страница:
<< 14 15 16 17 18 19
20 >> [Всего задач: 100]
В треугольник АВС вписана окружность и отмечен её центр I и точки касания P, Q, R со сторонами ВС, СА, АВ соответственно. Одной линейкой постройте точку К, в которой окружность, проходящая через вершины В и С, касается (внутренним образом) вписанной окружности.
Угол, изготовленный из прозрачного материала,
двигают так, что две непересекающиеся окружности касаются
его сторон внутренним образом. Докажите, что на нем
можно отметить точку, которая описывает дугу окружности.
|
|
Сложность: 5 Классы: 9,10,11
|
С помощью одного циркуля постройте окружность, в которую переходит данная
прямая
AB при инверсии относительно данной окружности
с данным центром
O.
|
|
Сложность: 5 Классы: 10,11
|
На плоскости нарисованы неравнобедренный треугольник ABC и вписанная в него окружность ω. Пользуясь только линейкой и проведя не более восьми линий, постройте на ω такие точки A′, B′, C′, что лучи B′C′, C′A′, A′B′ проходят через A, B, C соответственно.
|
|
Сложность: 6 Классы: 9,10,11
|
С помощью одного циркуля постройте окружность, проходящую через три данные точки.
Страница:
<< 14 15 16 17 18 19
20 >> [Всего задач: 100]