ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 492]      



Задача 108646

Темы:   [ Вспомогательные подобные треугольники ]
[ Биссектриса угла (ГМТ) ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 8,9

M – точка пересечения диагоналей трапеции ABCD. На основании BC выбрана такая точка P, что  ∠APM = ∠DPM.
Докажите, что расстояние от точки C до прямой AP равно расстоянию от точки B до прямой DP.

Прислать комментарий     Решение

Задача 108653

Темы:   [ Вспомогательные равные треугольники ]
[ Биссектриса угла (ГМТ) ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

На сторонах AB и BC треугольника ABC отложены равные отрезки AE и CF соответственно. Окружность, проходящая через точки B, C, E , и окружность, проходящая через точки A, B, F , пересекаются в точках B и D. Докажите, что BD – биссектриса угла ABC.

Прислать комментарий     Решение

Задача 108695

Темы:   [ Описанные четырехугольники ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3
Классы: 8,9

В выпуклом четырёхугольнике, описанном около окружности, произведения противоположных сторон равны. Угол между стороной и одной из диагоналей равен 20o . Найдите угол между этой стороной и другой диагональю.
Прислать комментарий     Решение


Задача 108887

Темы:   [ Вспомогательные равные треугольники ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Четырехугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

KLMN – выпуклый четырёхугольник, в котором равны углы K и L. Серединные перпендикуляры к сторонам KN и LM пересекаются на стороне KL.
Докажите, что в этом четырёхугольнике равны диагонали.

Прислать комментарий     Решение

Задача 108934

Темы:   [ Против большей стороны лежит больший угол ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3
Классы: 8,9

Серединный перпендикуляр к стороне BC треугольника ABC пересекает сторону AB в точке D , а продолжение стороны AC за точку A – в точке E . Докажите, что AD.
Прислать комментарий     Решение


Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 492]      


© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .