ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точки A, B, C, D, E, F лежат на одной окружности. Докажите, что точки пересечения прямых AB и DE, BC и EF, CD и FA лежат на одной прямой (Паскаль). ![]() ![]() Проведите через данную точку P, лежащую внутри угла AOB, прямую MN так, чтобы величина OM + ON была минимальной (точки M и N лежат на сторонах OA и OB). ![]() ![]() ![]() Используя проективные преобразования прямой, решите задачу о бабочке (задача 30.44). ![]() ![]() ![]() Дан угол XAY и точка O внутри его. Проведите через точку O прямую, отсекающую от данного угла треугольник наименьшей площади. ![]() ![]() |
Страница: << 1 2 [Всего задач: 9]
Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых не превосходят n, расположенные в порядке возрастания (ряд Фарея). Пусть a/b и c/d – какие-то два соседних числа (дроби несократимы). Доказать, что |bc – ad| = 1.
Ладья, делая ходы по вертикали и горизонтали на соседнее поле, за 64 хода обошла все поля шахматной доски 8×8 и вернулась на исходное поле. Докажите, что число ходов по вертикали не равно числу ходов по горизонтали.
Страница: << 1 2 [Всего задач: 9] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |