ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Уткин А.

В треугольнике $ABC$ $AL_a$, $BL_b$, $CL_c$ – биссектрисы, $K_a$ – точка пересечения касательных к описанной окружности в вершинах $B$ и $C$; $K_b$, $K_c$ определены аналогично. Докажите, что прямые $K_aL_a$, $K_bL_b$ и $K_cL_c$ пересекаются в одной точке.

Вниз   Решение


На клетчатой бумаге отмечены четыре узла сетки, образующие квадрат 4*4. Отметьте ещё два узла и соедините их замкнутой ломаной так, чтобы получился шестиугольник (не обязательно выпуклый) площади 6 клеток.

ВверхВниз   Решение


Автор: Белухов Н.

Даны два единичных куба с общим центром. Всегда ли можно занумеровать вершины каждого из кубов от $1$ до $8$ так, чтобы расстояние между любыми двумя вершинами с одинаковыми номерами не превышало $\frac{4}{5}$? А чтобы не превышало $\frac{13}{16}$?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 144]      



Задача 116119

Темы:   [ Поворот помогает решить задачу ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Правильные многоугольники ]
Сложность: 3
Классы: 8,9

Шестиугольник ABCDEF – правильный, K и M – середины отрезков BD и EF. Докажите, что треугольник AMK – правильный.

Прислать комментарий     Решение

Задача 54110

Темы:   [ Поворот помогает решить задачу ]
[ Поворот на $90^\circ$ ]
[ Вспомогательные равные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

На сторонах AB, BC, CD, DA квадрата ABCD взяты соответственно точки N, K, L, M, делящие эти стороны в одном и том же отношении (при обходе по часовой стрелке). Докажите, что KLMN – также квадрат.

Прислать комментарий     Решение

Задача 55721

Темы:   [ Поворот помогает решить задачу ]
[ Поворот на $90^\circ$ ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Применение тригонометрических формул (геометрия) ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

В квадрате ABCD точки K и M принадлежат сторонам BC и CD соответственно, причём AM – биссектриса угла KAD.
Докажите, что  AK = DM + BK.

Прислать комментарий     Решение

Задача 116120

Темы:   [ Поворот помогает решить задачу ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Правильные многоугольники ]
[ Шестиугольники ]
Сложность: 3+
Классы: 8,9

Пусть M и N – середины сторон CD и DE правильного шестиугольника ABCDEF. Найдите угол между прямыми AM и BN.

Прислать комментарий     Решение

Задача 55676

Темы:   [ Поворот помогает решить задачу ]
[ Построения ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки через точку внутри данного круга проведите хорду, отсекающую от окружности дугу заданной угловой величины.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 144]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .