Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 64]
|
|
Сложность: 3+ Классы: 10,11
|
Каждая из двух равных окружностей ω1 и ω2 проходит через центр другой. Треугольник ABC вписан в ω1, а прямые AC, BC касаются ω2.
Докажите, что cos∠A + cos∠B = 1.
|
|
Сложность: 3+ Классы: 9,10,11
|
Тангенсы углов треугольника – целые числа. Чему они могут быть равны?
Два правильных многоугольника с периметрами a и b описаны
около окружности, а третий правильный многоугольник вписан в эту окружность. Второй и третий многоугольники имеют вдвое больше сторон, чем первый. Найдите периметр третьего многоугольника.
|
|
Сложность: 4- Классы: 9,10
|
Докажите, что если сумма косинусов углов четырёхугольника равна нулю, то он
— параллелограмм, трапеция или вписанный четырёхугольник.
|
|
Сложность: 4- Классы: 10,11
|
Из точки, не лежащей в плоскости, проведены к этой плоскости перпендикуляр и три наклонные, проекции которых на данную плоскость равны a, b и c. Найдите длину перпендикуляра, если наклонные образуют с плоскостью углы, сумма которых равна 90°.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 64]