Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 257]
|
|
Сложность: 4 Классы: 10,11
|
Через точку
K , расположенную внутри сферы, проведены три
попарно перпендикулярные прямые. Первая прямая пересекает сферу в
точках
A и
A1
, вторая – в точках
B и
B1
, третья –
в точках
C и
C1
, причём
AA1
=22
,
CC1
=20
, а
точка
K делит отрезок
BB1
в отношении
(9
+ )
:
(9
-)
. Найдите радиус сферы, если известно, что точка
K отстоит от центра сферы на расстоянии
.
|
|
Сложность: 4 Классы: 10,11
|
На сфере радиуса 9 расположены точки
L ,
L1
,
M ,
M1
,
N
и
N1
. Отрезки
LL1
,
MM1
и
NN1
попарно перпендикулярны
и пересекаются в точке
A , отстоящей от центра сферы на расстоянии
.
В каком отношении точка
A делит отрезок
NN1
, если известно, что
LL1
=16
,
MM1
=14
?
|
|
Сложность: 4 Классы: 10,11
|
Дан куб
ABCDA1
B1
C1
D1
. Сфера касается рёбер
AD ,
DD1
,
CD и прямой
BC1
. Найдите радиус сферы, если ребро куба равно 1.
|
|
Сложность: 4 Классы: 10,11
|
Дан куб
ABCDA1
B1
C1
D1
. Сфера касается прямых
AC ,
B1
C ,
AB1
и продолжения ребра
BB1
за точку
B . Найдите радиус сферы,
если ребро куба равно 1, а точка касания с прямой
AC принадлежит грани
куба.
|
|
Сложность: 4 Классы: 10,11
|
Ребро куба
ABCDA1
B1
C1
D1
равно 1. Одна сфера радиуса
касается плоскости
ABC в точке
B ; другая сфера касается
плоскости
A1
D1
C1
в точке
E1
, лежащей на отрезке
C1
D1
,
причём
C1
E1
:E1
D1
= 1
:2
. Известно, что эти сферы касаются друг
друга внешним образом и точка их касания лежит внутри куба. Найдите
расстояние от точки касания сфер до точки
A .
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 257]