Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 127]
|
|
Сложность: 4+ Классы: 8,9,10
|
На окружности расставлены 2009 чисел, каждое из которых равно 1 или –1, причём не все числа одинаковые. Рассмотрим всевозможные десятки подряд стоящих чисел. Найдём произведения чисел в каждом десятке и сложим их. Какая наибольшая сумма может получиться?
|
|
Сложность: 4+ Классы: 10,11
|
Плоскость проходит через сторону основания правильной
четырёхугольной пирамиды и делит пополам двугранный угол при этой стороне.
Найдите площадь основания пирамиды наименьшего объёма, если известно, что
указанная плоскость пересекает высоту пирамиды в точке, удалённой на
расстояние
d от плоскости основания.
|
|
Сложность: 4+ Классы: 10,11
|
Каково наибольшее возможное число лучей в пространстве, выходящих из одной
точки и образующих попарно тупые углы?
|
|
Сложность: 5 Классы: 10,11
|
На диагонали
AC нижней грани единичного куба
ABCDA1B1C1D1
отложен отрезок
AE длины
l . На диагонали
B1D1 его верхней
грани отложен отрезок
B1F длиной
ml . При каком
l (и
фиксированном
m>0 ) длина отрезка
EF будет наименьшей?
|
|
Сложность: 5+ Классы: 10,11
|
Шесть кругов с радиусами, равными 1, расположены на плоскости так, что расстояние между центрами любых двух из них больше $d$. При каком наименьшем $d$ можно утверждать, что найдется прямая, не пересекающая ни одного из кругов, по каждую сторону от которой лежат три круга?
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 127]