ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 125]      



Задача 65098

Темы:   [ Обыкновенные дроби ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

По окружности записали красным пять несократимых дробей с нечётными знаменателями, большими 1010. Между каждыми двумя соседними красными дробями вписали синим несократимую запись их суммы. Могло ли случиться, что у синих дробей все знаменатели меньше 100?

Прислать комментарий     Решение

Задача 67276

Тема:   [ Обыкновенные дроби ]
Сложность: 4
Классы: 7,8,9,10,11

Существует ли число, которое может быть представлено в виде $\frac1n + \frac1m$, где $m$ и $n$ натуральные, не менее чем ста способами? Ответ объясните.
Прислать комментарий     Решение


Задача 78829

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Подсчет двумя способами ]
[ Правило произведения ]
Сложность: 4
Классы: 7,8,9

Пусть K(x) равно числу таких несократимых дробей a/b, что  a < x  и  b < x  (a и b – натуральные числа). Например,  K(5/2) = 3  (дроби 1, 2, ½).
Вычислить сумму  K(100) + K(100/2) + K(100/3) + ... + K(100/99) + K(100/100).

Прислать комментарий     Решение

Задача 98253

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Целочисленные и целозначные многочлены ]
[ Теорема Виета ]
[ Кубические многочлены ]
Сложность: 4
Классы: 8,9

а) Существуют ли такие натуральные числа a, b, c, что из двух чисел  a/b + b/c + c/a  и  b/a + c/b + a/c  ровно одно – целое?

б) Докажите, что если они оба целые, то  a = b = c.

Прислать комментарий     Решение

Задача 111843

Темы:   [ Обыкновенные дроби ]
[ Четность и нечетность ]
Сложность: 4
Классы: 7,8,9

На доске написали 100 дробей, у которых в числителях стоят все числа от 1 до 100 по одному разу и в знаменателях стоят все числа от 1 до 100 по одному разу. Оказалось, что сумма этих дробей есть несократимая дробь со знаменателем 2. Докажите, что можно поменять местами числители двух дробей так, чтобы сумма стала несократимой дробью с нечётным знаменателем.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .