ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дана клетчатая таблица 99×99, каждая клетка которой окрашена в чёрный или в белый цвет. Разрешается одновременно перекрасить все клетки некоторого столбца или некоторой строки в тот цвет, клеток которого в этом столбце или в этой строке до перекрашивания было больше. Всегда ли можно добиться того, чтобы все клетки таблицы стали покрашены в один цвет? ![]() ![]() Найдите все натуральные n, для которых 2n ≤ n². ![]() ![]() |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 126]
Винни-Пух и Пятачок поделили между собой торт. Пятачок захныкал, что ему досталось мало. Тогда Пух отдал ему треть своей доли. От этого у Пятачка количество торта увеличилось втрое. Какая часть торта была вначале у Пуха и какая у Пятачка?
"А это вам видеть пока рано", – сказала Баба-Яга своим 33 ученикам и скомандовала: "Закройте глаза!" Правый глаз закрыли все мальчики и треть девочек. Левый глаз закрыли все девочки и треть мальчиков. Сколько учеников всё-таки увидели то, что видеть пока рано?
Вычислить
Доказать, что дробь $\frac{12n+1}{30n+1}$ несократима.
Докажите, что уравнение 1/а + 1/b + 1/c + 1/d + 1/e + 1/f = 1 не имеет решений в нечётных натуральных числах.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 126] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |