ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Фольклор

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 378]      



Задача 66122

Темы:   [ Теория графов (прочее) ]
[ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Произведения и факториалы ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Автор: Фольклор

В Чикаго живут 36 гангстеров, некоторые из которых враждуют между собой. Каждый гангстер состоит в нескольких бандах, причём нет двух банд с совпадающим составом. Оказалось, что гангстеры, состоящие в одной банде, не враждуют, но если гангстер не состоит в какой-то банде, то он враждует хотя бы с одним её участником. Какое наибольшее число банд могло быть в Чикаго?

Прислать комментарий     Решение

Задача 97818

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип крайнего (прочее) ]
Сложность: 5-
Классы: 8,9,10

Автор: Фольклор

На бесконечной во все стороны шахматной доске выделено некоторое множество клеток A. На всех клетках доски, кроме множества A, стоят короли. Все короли могут по команде одновременно сделать ход, заключающийся в том, что король либо остаётся на месте, либо занимает соседнее поле, то есть делает "ход короля". При этом он может занять и то поле, с которого сходит другой король, но в результате хода двум королям оказаться в одной клетке запрещается. Существует ли такое k и такой способ движения королей, что после k ходов вся доска будет заполнена королями? Рассмотрите варианты:
  а) A есть множество всех клеток, у которых обе координаты кратны 100 (предполагается, что одна горизонтальная и одна вертикальная линии занумерованы всеми целыми числами от минус бесконечности до бесконечности и каждая клетка доски обозначается двумя числами – координатами по этим двум осям);
  б) A есть множество всех клеток, каждая из которых бьётся хотя бы одним из 100 ферзей, расположенных каким-то фиксированным образом.

Прислать комментарий     Решение

Задача 98037

Темы:   [ Площади криволинейных фигур ]
[ Вычисление площадей ]
[ Вычисление производной ]
Сложность: 5-
Классы: 10,11

Автор: Фольклор

Внутри круга радиуса R взята точка A. Через неё проведены две перпендикулярные прямые. Потом прямые повернули на угол φ относительно точки A. Хорды, высекаемые окружностью из этих прямых, замели при повороте фигуру, имеющую форму креста с центром в точке A. Найдите площадь креста.

Прислать комментарий     Решение

Задача 97784

Темы:   [ Целочисленные и целозначные многочлены ]
[ Многочлены (прочее) ]
Сложность: 5
Классы: 9,10,11

Автор: Фольклор

Многочлен P(x) со старшим коэффициентом, равным 1, обладает тем свойством, что среди значений, принимаемых им при натуральных значениях аргумента, встречаются все числа вида 2m с натуральным m. Докажите, что этот многочлен – первой степени.

Прислать комментарий     Решение

Задача 97906

Темы:   [ Объединение, пересечение и разность множеств ]
[ Сочетания и размещения ]
[ Принцип Дирихле (прочее) ]
Сложность: 5
Классы: 8,9,10

Автор: Фольклор

30 учеников одного класса решили побывать друг у друга в гостях. Известно, что ученик за вечер может сделать несколько посещений, и что в тот вечер, когда к нему кто-нибудь должен прийти, он сам никуда не уходит. Покажите, что для того, чтобы все побывали в гостях у всех,
  а) четырёх вечеров недостаточно,
  б) пяти вечеров также недостаточно,
  в) а десяти вечеров достаточно,
  г) и даже семи вечеров тоже достаточно.

Прислать комментарий     Решение

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 378]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .