Страница:
<< 70 71 72 73 74 75
76 >> [Всего задач: 378]
|
|
Сложность: 5- Классы: 9,10,11
|
В Чикаго живут 36 гангстеров, некоторые из которых враждуют между собой. Каждый гангстер состоит в нескольких бандах, причём нет двух банд с совпадающим составом. Оказалось, что гангстеры, состоящие в одной банде, не враждуют, но если гангстер не состоит в какой-то банде, то он враждует хотя бы с одним её участником. Какое наибольшее число банд могло быть в Чикаго?
|
|
Сложность: 5- Классы: 8,9,10
|
На бесконечной во все стороны шахматной доске выделено некоторое множество
клеток A. На всех клетках доски, кроме множества A, стоят короли. Все короли могут по команде одновременно сделать ход, заключающийся в том, что король либо остаётся на месте, либо занимает соседнее поле, то есть делает "ход короля". При этом он может занять и то поле, с которого сходит другой король, но в результате хода двум королям оказаться в одной клетке запрещается. Существует ли такое k и такой способ движения королей, что после k ходов вся доска будет заполнена королями? Рассмотрите варианты:
а) A есть множество всех клеток, у которых обе координаты кратны 100 (предполагается, что одна горизонтальная и одна вертикальная линии занумерованы всеми целыми числами от минус бесконечности до бесконечности и каждая клетка доски обозначается двумя числами – координатами по этим двум осям);
б) A есть множество всех клеток, каждая из которых бьётся хотя бы одним из 100 ферзей, расположенных каким-то фиксированным образом.
|
|
Сложность: 5- Классы: 10,11
|
Внутри круга радиуса R взята точка A. Через неё проведены две
перпендикулярные прямые. Потом прямые повернули на угол φ относительно точки A. Хорды, высекаемые окружностью из этих прямых, замели при повороте фигуру, имеющую форму креста с центром в точке A. Найдите площадь креста.
|
|
Сложность: 5 Классы: 9,10,11
|
Многочлен P(x) со старшим коэффициентом, равным 1, обладает тем свойством, что среди значений, принимаемых им при натуральных значениях аргумента, встречаются все числа вида 2m с натуральным m. Докажите, что этот многочлен – первой степени.
|
|
Сложность: 5 Классы: 8,9,10
|
30 учеников одного класса решили побывать друг у друга в гостях. Известно, что ученик за вечер может сделать несколько посещений, и что в тот вечер, когда к нему кто-нибудь должен прийти, он сам никуда не уходит. Покажите, что для того, чтобы все побывали в гостях у всех,
а) четырёх вечеров недостаточно,
б) пяти вечеров также недостаточно,
в) а десяти вечеров достаточно,
г) и даже семи вечеров тоже достаточно.
Страница:
<< 70 71 72 73 74 75
76 >> [Всего задач: 378]