Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 90]
|
|
Сложность: 4 Классы: 8,9,10
|
Два игрока по очереди выписывают на доске в ряд слева направо произвольные цифры. Проигрывает игрок, после хода которого одна или несколько цифр, записанных подряд, образуют число, кратное 11. Кто из игроков победит при правильной игре?
|
|
Сложность: 4 Классы: 9,10,11
|
AA1 и BB1 – высоты остроугольного неравнобедренного треугольника ABC. Известно, что отрезок A1B1 пересекает среднюю линию, параллельную AB, в точке C'. Докажите, что отрезок CC' перпендикулярен прямой, проходящей через точку пересечения высот и центр описанной окружности треугольника ABC.
|
|
Сложность: 4 Классы: 8,9,10
|
Через точку пересечения высот остроугольного треугольника ABC
проходят три окружности, каждая из которых касается одной из сторон треугольника в основании высоты. Докажите, что вторые точки пересечения окружностей являются вершинами треугольника, подобного исходному.
Биссектрисы углов
A и
C треугольника
ABC пересекают
описанную окружность этого треугольника
в точках
A0 и
C0 соответственно.
Прямая, проходящая через центр вписанной окружности
треугольника
ABC параллельно стороне
AC , пересекается с прямой
A0C0 в точке
P .
Докажите, что прямая
PB касается описанной окружности треугольника
ABC .
|
|
Сложность: 4 Классы: 8,9,10,11
|
Какие треугольники можно разрезать на три треугольника с равными радиусами описанных окружностей?
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 90]