ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Главы:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Можно ли на плоскости из каждой точки с рациональными координатами выпустить луч так, чтобы никакие два луча не имели общей точки и при этом среди прямых, содержащих эти лучи, никакие две не были бы параллельны?

Вниз   Решение


На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида  a + d,  где d взаимно просто с а и  10 ≤ d ≤ 20.
Можно ли через несколько таких операций получить на доске число 18! ?

Вверх   Решение

Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 1956]      



Задача 56684  (#03.027)

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 2
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности с центром O. Докажите, что если из точки M отрезок AO виден под углом  90o, то отрезки OB и OC видны из нее под равными углами.
Прислать комментарий     Решение


Задача 56685  (#03.028)

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности с центром O. Через точку X отрезка BC проведена прямая KL, перпендикулярная XO (точки K и L лежат на прямых AB и AC). Докажите, что KX = XL.
Прислать комментарий     Решение


Задача 56686  (#03.029)

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

На продолжении хорды KL окружности с центром O взята точка A, и из нее проведены касательные AP и AQM — середина отрезка PQ. Докажите, что  $ \angle$MKO = $ \angle$MLO.
Прислать комментарий     Решение


Задача 56687  (#03.030)

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 5
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности и секущая, пересекающая окружность в точках D и EM — середина отрезка BC. Докажите, что  BM2 = DM . ME и угол DME в два раза больше угла DBE или угла DCE; кроме того,  $ \angle$BEM = $ \angle$DEC.
Прислать комментарий     Решение


Задача 56688  (#03.031)

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 5
Классы: 8,9

Четырехугольник ABCD вписан в окружность, причем касательные в точках B и D пересекаются в точке K, лежащей на прямой AC.
а) Докажите, что  AB . CD = BC . AD.
б) Прямая, параллельная KB, пересекает прямые BA, BD и BC в точках P, Q и R. Докажите, что PQ = QR.
Прислать комментарий     Решение


Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 1956]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .