ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны равнобедренный прямоугольный треугольник ABC и прямоугольный треугольник ABD с общей гипотенузой AB (D и C лежат по одну сторону от прямой AB). Пусть DK – биссектриса треугольника ABD. Докажите, что центр описанной окружности треугольника ACK лежит на прямой AD. ![]() ![]() Докажите, что для угла Брокара а) б) 8 ![]() ![]() ![]() Сфера с центром в плоскости основания ABC тетраэдра SABC проходит через вершины A , B и C и вторично пересекает ребра SA , SB и SC в точках A1 , B1 и C1 соответственно. Плоскости, касающиеся сферы в точках A1 , B1 и C1 , пересекаются в точке O . Докажите, что O – центр сферы, описанной около тетраэдра SA1B1C1 . ![]() ![]() ![]() Назовём непустое (конечное или бесконечное) множество A, состоящее из действительных чисел, полным, если для любых действительных a и b (не обязательно различных и не обязательно лежащих в A), при которых a + b лежит в A, число ab также лежит в A. Найдите все полные множества действительных чисел. ![]() ![]() |
Страница: << 1 2 3 4 5 [Всего задач: 24]
По кругу стоят n мальчиков и n девочек. Назовём пару из мальчика и девочки хорошей, если на одной из дуг между ними стоит поровну мальчиков и девочек (в частности, стоящие рядом мальчик и девочка образуют хорошую пару). Оказалось, что есть девочка, которая участвует ровно в 10 хороших парах. Докажите, что есть и мальчик, который участвует ровно в 10 хороших парах.
Дан выпуклый четырёхугольник ABCD, в котором ∠DAB = 90°. Пусть M – середина стороны BC. Оказалось. что ∠ADC = ∠BAM.
Найдите все такие пары различных действительных чисел x и y, что x100 – y100 = 299(x – y) и x200 – y200 = 2199(x – y).
Натуральное число N представляется в виде N = a1 – a2 = b1 – b2 = c1 – c2 = d1 – d2, где a1 и a2 – квадраты, b1 и b2 – кубы, c1 и c2 – пятые степени, а d1 и d2 – седьмые степени натуральных чисел. Обязательно ли среди чисел a1, b1, c1 и d1 найдутся два равных?
Страница: << 1 2 3 4 5 [Всего задач: 24] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |