ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Известно, что среди членов правительства Лимонии (а всего в нем 20 членов) заведомо имеется хотя бы один честный, а также что из любых двух хотя бы один -- взяточник. Сколько в правительстве взяточников? ![]() ![]() Докажите, что в любой компании из пяти человек есть двое, имеющие одинаковое число знакомых в этой компании. ![]() ![]() ![]() На хоккейном поле лежат три шайбы А, В и С. Хоккеист бьёт по одной из них так, что она пролетает между двумя другими. Так он делает 25 раз. Могут ли после этого шайбы оказаться на исходных местах? ![]() ![]() |
Страница: 1 2 >> [Всего задач: 8]
Могут ли все числа 1, 2, 3 ... 100 быть членами 12 геометрических прогрессий?
Докажите, что любую функцию, определённую на всей оси, можно представить в виде суммы двух функций, график каждой из которой имеет ось симметрии.
На плоскости отмечены две точки на расстоянии 1. Разрешается, измерив циркулем расстояние между двумя отмеченными точками, провести окружность с центром в любой отмеченной точке с измеренным радиусом. Линейкой разрешается провести прямую через любые две отмеченные точки. При этом отмечаются новые точки – точки пересечения построенных линий. Пусть Ц(n) – наименьшее число линий, проведение которых одним циркулем позволяет получить две отмеченные точки на расстоянии n (n – натуральное). ЛЦ(n) – то же, но циркулем и линейкой. Докажите, что последовательность
Докажите, что для любого натурального числа a1 > 1 существует такая возрастающая последовательность натуральных чисел a1, a2, a3, ...,
Страница: 1 2 >> [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |