ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи У Маши есть двухрублёвые и пятирублёвые монеты. Если она возьмёт все свои двухрублёвые монеты, ей не хватит 60 рублей, чтобы купить четыре пирожка. Если все пятирублёвые – не хватит 60 рублей на пять пирожков. А всего ей не хватает 60 рублей для покупки шести пирожков. Сколько стоит пирожок? ![]() ![]() Вписанная окружность σ треугольника ABC касается его сторон BC , AC , AB в точках A' , B' , C' соответственно. Точки K и L на окружности σ таковы, что ![]() ![]() ![]() Оказывается, можно придумать фигуру, которую нельзя разрезать на "доминошки" (прямоугольники из двух клеток), но если к ней пририсовать доминошку – получившуюся фигуру уже можно будет разрезать на доминошки. Нарисуйте по клеточкам такую фигуру (она не должна распадаться на части), пририсуйте к ней доминошку (заштрихуйте её) и покажите, как разрезать результат на доминошки. ![]() ![]() ![]() На острове живут 100 рыцарей и 100 лжецов, у каждого из них есть хотя бы один друг. Рыцари всегда говорят правду, а лжецы всегда лгут. Однажды утром каждый житель произнес либо фразу "Все мои друзья – рыцари", либо фразу "Все мои друзья – лжецы", причем каждую из фраз произнесло ровно 100 человек. Найдите наименьшее возможное число пар друзей, один из которых рыцарь, а другой – лжец. ![]() ![]() |
Страница: 1 2 3 4 5 >> [Всего задач: 24]
Числа a, b, c таковы, что a²(b + c) = b²(a + c) = 2008 и a ≠ b. Найдите значение выражения c²(a + b).
В клетках квадрата 5×5 изначально были записаны нули. Каждую минуту Вася выбирал две клетки с общей стороной и либо прибавлял по единице к числам в них, либо вычитал из них по единице. Через некоторое время оказалось, что суммы чисел во всех строках и столбцах равны. Докажите, что это произошло через чётное число минут.
Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны.
Даны положительные рациональные числа a, b. Один из корней трёхчлена x² – ax + b – рациональное число, в несократимой записи имеющее вид m/n. Докажите, что знаменатель хотя бы одного из чисел a и b (в несократимой записи) не меньше n2/3.
Дано натуральное число n > 1. Для каждого делителя d числа n + 1, Петя разделил число n на d с остатком и записал на доску неполное частное, а в тетрадь – остаток. Докажите, что наборы чисел на доске и в тетради совпадают.
Страница: 1 2 3 4 5 >> [Всего задач: 24] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |