Страница:
<< 1 2 3 4 5
6 >> [Всего задач: 29]
Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Перпендикуляр, опущенный из точки M на диагональ AC, и перпендикуляр, опущенный из точки N на диагональ BD, пересекаются в точке P. Докажите, что PA = PD.
|
|
Сложность: 3+ Классы: 9,10
|
В трапеции ABCD с основаниями AD и BC лучи AB и DC пересекаются в точке K. Точки P и Q – центры описанных окружностей треугольников ABD и BCD. Докажите, что ∠PKA = ∠QKD.
Куб разбит на прямоугольные параллелепипеды так, что для любых двух параллелепипедов
их проекции на некоторую грань куба перекрываются (то есть пересекаются по фигуре ненулевой
площади). Докажите, что для любых трёх параллелепипедов найдётся такая грань куба, что
проекции каждых двух из них на эту грань не перекрываются.
Рассматриваются ортогональные проекции данного правильного тетраэдра с единичным
ребром на всевозможные плоскости. Какое наибольшее значение может принимать радиус круга,
содержащегося в такой проекции?
|
|
Сложность: 5 Классы: 10,11
|
По рёбрам треугольной пирамиды ползают четыре жука, при этом каждый жук всё время остаётся только в одной грани (в каждой грани – свой жук). Каждый жук обходит границу своей грани в определённом направлении, причём так, что каждые два жука по общему для них ребру ползут в противоположных направлениях. Докажите, что если скорости (возможно, непостоянные) каждого из жуков всегда больше 1 см/с, то когда-нибудь какие-то два жука обязательно встретятся.
Страница:
<< 1 2 3 4 5
6 >> [Всего задач: 29]