Страница:
<< 57 58 59 60
61 62 63 >> [Всего задач: 1703]
Из клетчатого прямоугольника 9×9 вырезали 16 клеток, у которых номера горизонталей и вертикалей чётные. Разрежьте оставшуюся фигуру на несколько клетчатых прямоугольников так, чтобы среди них было как можно меньше
квадратиков 1×1.
В вершинах 33-угольника записали в некотором порядке целые числа от 1 до 33. Затем на каждой стороне написали сумму чисел в её концах.
Могут ли на сторонах оказаться 33 последовательных целых числа (в каком-нибудь порядке)?
В каждой клетке секретной таблицы n×n записана одна из цифр от 1 до 9. Из них получаются n-значные числа, записанные в строках слева направо и в столбцах сверху вниз. Петя хочет написать такое n-значное число без нулей в записи, чтобы ни это число, ни оно же,
записанное задом наперед, не совпадало ни с одним из 2n чисел в строках
и столбцах таблицы. В каком наименьшем количестве клеток Петя должен для этого узнать цифры?
В выпуклом четырёхугольнике ABCD стороны равны соответственно: AB = 10, BC = 14, CD = 11, AD = 5. Найдите угол между его диагоналями.
Натуральные числа a < b < c таковы, что b + a делится на b – a, а c + b делится на c – b. Число a записывается 2011, а число b – 2012 цифрами. Сколько цифр в числе c?
Страница:
<< 57 58 59 60
61 62 63 >> [Всего задач: 1703]