Страница:
<< 58 59 60 61
62 63 64 >> [Всего задач: 1703]
На стороне AB треугольника ABC взята такая точка P, что AP = 2PB, а на стороне AC – ее середина, точка Q. Известно, что CP = 2PQ.
Докажите, что треугольник ABC прямоугольный.
|
|
Сложность: 3 Классы: 8,9,10
|
Известно, что 0 < a, b, c, d < 1 и abcd = (1 – a)(1 – b)(1 – c)(1 – d). Докажите, что (a + b + c + d) – (a + c)(b + d) ≥ 1.
|
|
Сложность: 3 Классы: 10,11
|
Петя отметил на плоскости несколько (больше двух) точек, все расстояния между которыми различны. Пару отмеченных точек (A, B) назовём необычной, если A – самая дальняя от B отмеченная точка, а B – ближайшая к A отмеченная точка (не считая самой точки A). Какое наибольшее возможное количество необычных пар могло получиться у Пети?
|
|
Сложность: 3 Классы: 10,11
|
100 пиратов сыграли в карты на золотой песок, а потом каждый посчитал, сколько он в сумме выиграл либо проиграл. У каждого проигравшего хватает золота, чтобы расплатиться. За одну операцию пират может либо раздать всем поровну золота, либо получить с каждого поровну золота. Докажите, что можно за несколько таких операций добиться того, чтобы каждый получил (в сумме) свой выигрыш либо выплатил проигрыш. (Разумеется, общая сумма выигрышей равна сумме проигрышей.)
Малыш и Карлсон режут квадратный торт. Карлсон выбирает на нём точку (не на границе). После этого Малыш делает прямолинейный разрез от выбранной точки до края (в любом направлении). Затем Карлсон проводит второй прямолинейный разрез от выбранной точки до края, перпендикулярный первому, и отдаёт меньший из получившихся двух кусков Малышу. Малыш хочет получить хотя бы четверть торта. Может ли Карлсон ему помешать?
Страница:
<< 58 59 60 61
62 63 64 >> [Всего задач: 1703]