Страница: 1
2 >> [Всего задач: 6]
Задача
32891
(#1)
|
|
Сложность: 3 Классы: 7,8,9
|
На круглом столе через равные промежутки лежат пирожные. Игорь ходит вокруг стола и съедает каждое третье встреченное пирожное (каждое пирожное может быть встречено несколько раз). Когда на столе не осталось пирожных, он заметил, что последним взял пирожное, которое встретил первым, и прошёл ровно семь кругов вокруг стола. Сколько было пирожных?
Задача
32892
(#2)
|
|
Сложность: 3+ Классы: 8,9
|
В треугольнике ABC, где угол B прямой, а угол A меньше угла C, проведена медиана BM. На стороне AC взята точка L так, что ∠ABM = ∠MBL. Описанная окружность треугольника BML пересекает сторону AB в точке N. Докажите, что AN = BL.
Задача
32893
(#3)
|
|
Сложность: 3+ Классы: 8,9,10
|
Про положительные числа a, b, c, d, e известно, что a² + b² + c² + d² + e² = ab + ac + ad + ae + bc + bd + be + cd + ce + de.
Докажите, что среди этих чисел найдутся три, которые не могут быть длинами сторон одного треугольника.
Задача
32894
(#4)
|
|
Сложность: 4- Классы: 8,9,10
|
Разрежьте фигуру, изображённую на рисунке, на две равные части.
Задача
32895
(#5)
|
|
Сложность: 4 Классы: 8,9,10
|
Назовём точку на плоскости узлом, если обе её координаты целые числа. Дан треугольник с вершинами в узлах, внутри него расположено не меньше двух узлов. Докажите, что среди узлов внутри треугольника можно выбрать такие два узла, что проходящая через них прямая содержит одну из вершин треугольника или параллельна одной из сторон треугольника.
Страница: 1
2 >> [Всего задач: 6]